An electric car is an automobile that is propelled by one or more electric motors, using energy stored in rechargeable batteries. The first practical electric cars were produced in the 1880s.[1][2] Electric cars were popular in the late 19th century and early 20th century, until advances in internal combustion engines, electric starters in particular, and mass production of cheaper gasoline vehicles led to a decline in the use of electric drive vehicles. In 1897, electric cars found their first commercial use in the USA. New York City taxis were electric, and they were manufactured by the Philadelphian Electric Carriage and Wagon company. During the 20th century, the main manufacturers of electric vehicles in the US were Anthony Electric, Baker, Columbia, Anderson, Edison, Riker, Milburn and others. Unlike gasoline-powered vehicles, the electric ones were quieter and did not require gear changes.[3]
Since 2008, a renaissance in electric vehicle manufacturing occurred due to advances in batteries, concerns about increasing oil prices, and the desire to reduce greenhouse gas emissions.[4][5] Several national and local governments have established tax credits, subsidies, and other incentives to promote the introduction and now adoption in the mass market of new electric vehicles depending on battery size and their all-electric range. The current tax credit allowed by the US Government is between $2,500 - $7,500 per car.[6] Compared with cars with internal combustion (IC) engines, electric cars are quieter and have no tailpipe emissions. When recharged by low-emission electrical power sources, electric vehicles can reduce greenhouse gas emissions compared to IC engines. Where oil is imported, use of electric vehicles can reduce imports. However, a proper analysis of the overall benefit/efficiency of an electric vehicle must include what type of source was used to charge the battery, the energy required to make the battery, and the energy expended in disposing of it, in an environmentally sound manner.
Recharging can take up to an hour, however this amount of time is being reduced as the technology improves. A major limiting factor is that currently there is inadequate recharging infrastructure. Battery cost limits range and increases purchase cost over IC vehicles, but battery costs are decreasing. Drivers can also sometimes suffer from range anxiety- the fear that the batteries will be depleted before reaching their destination.[4][5]. In many respects, especially because of range, charging time, and inavailability of charging infrastructure), people who own electric vehicles own them as a second vehicle, with gas powered vehicles being their primary mode of transportation. As technology improves this will change.
As of December 2015, there were over 30 models of highway legal all-electric passenger cars and utility vans available. Cumulative global sales of highway-capable light-duty pure electric vehicles passed one million units in total, globally, in September 2016.[7][8]
Terminology[edit]
Electric cars are a variety of electric vehicle (EV). The term "electric vehicle" refers to any vehicle that uses electric motors for propulsion, while "electric car" generally refers to highway-capable automobiles powered by electricity. Low-speed electric vehicles, classified as neighborhood electric vehicles (NEVs) in the United States,[9] and as electric motorised quadricycles in Europe,[10] are plug-in electric-powered microcars or city cars with limitations in terms of weight, power and maximum speed that are allowed to travel on public roads and city streets up to a certain posted speed limit, which varies by country.
While an electric car's power source is not explicitly an on-board battery, electric cars with motors powered by other energy sources are generally referred to by a different name. An electric car carrying solar panels to power it is a solar car, and an electric car powered by a gasoline generator is a form of hybrid car. Thus, an electric car that derives its power from an on-board battery pack is a form of battery electric vehicle (BEV). Most often, the term "electric car" is used to refer to battery electric vehicles.[citation needed] However, today the energy used by breaking is converted to electrical enenegy, and such cars are still considered fully electric vehicles.
History[edit]
Thomas Parker built the first practical production electric car in London in 1884, using his own specially designed high-capacity rechargeable batteries.[2][12][13] The Flocken Elektrowagen of 1888 was designed by German inventor Andreas Flocken.[14] Electric cars were among the preferred methods for automobile propulsion in the late 19th century and early 20th century, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time.[15] The electric vehicle stock peaked at approximately 30,000 vehicles at the turn of the 20th century.[16]
In 1897, electric cars found their first commercial use in the USA. Based on the design of the Electrobat II, a fleet of twelve hansom cabs and one brougham were used in New York City as part of a project funded in part by the Electric Storage Battery Company of Philadelphia.[17] During the 20th century, the main manufacturers of electric vehicles in the US were Anthony Electric, Baker, Columbia, Anderson, Edison, Riker, Milburn, Bailey Electric and others. Unlike gasoline-powered vehicles, the electric ones were less fast and less noisy, and did not require gear changes. [18]
Advances in internal combustion engines in the first decade of the 20th century lessened the relative advantages of the electric car. The greater range of gasoline cars, and their much quicker refueling times, made them more popular and encouraged a rapid expansion of petroleum infrastructure, making gasoline easy to find, but what proved decisive was the introduction in 1912 of the electric starter motor which replaced other, often laborious, methods of starting the ICE, such as hand-cranking.
In the early 1990s, the California Air Resources Board (CARB) began a push for more fuel-efficient, lower-emissions vehicles, with the ultimate goal being a move to zero-emissions vehicles such as electric vehicles.[4][19] In response, automakers developed electric models, including the Chrysler TEVan, Ford Ranger EV pickup truck, GM EV1, and S10 EV pickup, Honda EV Plus hatchback, Nissan Altra EV miniwagon, and Toyota RAV4 EV. These cars were eventually withdrawn from the U.S. market.[20]
California electric automaker Tesla Motors began development in 2004 on what would become the Tesla Roadster (2008), which was first delivered to customers in 2008. The Roadster was the first highway legal serial production all-electric car to use lithium-ion battery cells, and the first production all-electric car to travel more than 320 km (200 miles) per charge.[21] Models released to the market between 2010 and December 2016 include the Mitsubishi i-MiEV, Nissan Leaf, Ford Focus Electric, Tesla Model S, BMW ActiveE, Coda, Renault Fluence Z.E., Honda Fit EV, Toyota RAV4 EV, Renault Zoe, Roewe E50, Mahindra e2o, Chevrolet Spark EV, Fiat 500e, Volkswagen e-Up!, BMW i3, BMW Brilliance Zinoro 1E, Kia Soul EV, Volkswagen e-Golf, Mercedes-Benz B-Class Electric Drive, Venucia e30, BAIC E150 EV, Denza EV, Zotye Zhidou E20, BYD e5, Tesla Model X, Detroit Electric SP.01, BYD Qin EV300, Hyundai Ioniq Electric and Chevrolet Bolt EV.
Cumulative global sales of the Nissan Leaf, currently the top selling electric car, passed 200,000 units in December 2015, five years after its introduction.[22][23] The same month, the Renault-Nissan Alliance, the top selling all-electric vehicle manufacturer, passed the milestone of 300,000 electric vehicles sold worldwide.[23] The Tesla Model 3 was unveiled on March 31, 2016 and more than 325,000 reservations were made during the first week since bookings opened, each customer paying a refundable US$1,000 deposit to reserve the car.[24]Cumulative global sales of all-electric cars and vans passed the 1 million unit milestone in September 2016.[7] Global Tesla Model S sales achieved the 150,000 unit milestone in November 2016.[25] Norway achieved the milestone of 100,000 all-electric vehicles registered in December 2016.[26] Global Leaf sales passed 250,000 units in December 2016.[27]
Economics[edit]
![]() |
This section may contain an excessive amount of intricate detail that may only interest a specific audience. Specifically, about repetition of the same basic argument several times. It's clear the author is trying to argue with the reader, pushing the belief that electric cars are affordable, rather than just summarizing facts. Even so, it beats a dead horse. One or two current, specific examples are sufficient, rather than pounding away over and over. (July 2017) (Learn how and when to remove this template message)
|
Purchase cost[edit]
As of 2013, electric cars are significantly more expensive than conventional internal combustion engine vehicles and hybrid electric vehicles due to the cost of their battery pack.[28] However, battery prices are coming down about 8% per annum with mass production, and are expected to drop further[29][30][31] as competition increases.[32][33]
According to a 2010 survey, around three quarters of American and British car buyers have or would consider buying an electric car, but they are unwilling to pay more for an electric car.[34] Several national and local governments have established tax credits, subsidies, and other incentives to reduce the net purchase price of electric cars and other plug-ins.[35][36][37][38]
Car manufacturers choose different strategies for EVs. For low production, converting existing platforms is the cheapest as development cost is low. For higher production, a dedicated platform may be preferred to optimize design.[39]
Battery first cost[edit]
Tesla Motors uses laptop-size cells for a cost of about $200 per kilowatt hour.[40][41][42] Based on the three battery size options offered for the Tesla Model S, The New York Times estimated the cost of automotive battery packs between US$400 to US$500 per kilowatt-hour.[43]
A 2013 study reported that battery costs came down from US$1,300 per kilowatt hour in 2007 to US$500 per kilowatt hour in 2012. The U.S. Department of Energy has set cost targets for its sponsored battery research of US$300 per kilowatt hour in 2015 and US$125 per kilowatt hour by 2022. Cost reductions of batteries and higher production volumes will allow plug-in electric vehicles to be more competitive with conventional internal combustion engine vehicles.[44]
A 2016 study by Bloomberg New Energy Finance (BNEF) says battery prices fell 65% since 2010, and 35% just in 2015, reaching US$350 per kWh. The study predicts electric car battery costs to be below US$120 per kWh by 2030, and to fall further thereafter as new chemistries become available.[45][46] McKinsey estimates that electric cars are competitive at a battery pack cost of $100/kWh (around 2030), and expects pack costs to be $190/kWh by 2020.[47]
Maintenance[edit]
The documentary Who Killed the Electric Car? shows a comparison between the parts that require replacement in gasoline-powered cars and EV1s, with the garages stating that they bring the electric cars in every 5,000 mi (8,000 km), rotate the tires, fill the windshield washer fluid and send them back out again.[needs update][48] Other advantages of electric cars are that they do not need to be driven to petrol stations and there are often fewer fluids which need to be changed.
Electricity cost[edit]
The cost of charging the battery depends on the cost of electricity. As of November 2012, a Nissan Leaf driving 500 miles (800 km) per week is estimated to cost US$600 per year in charging costs in Illinois, U.S.,[49] as compared to US$2,300 per year in fuel costs for an average new car using regular gasoline.[50][51]
According to Nissan, the operating electricity cost of the Leaf in the UK is 1.75 pence per mile (1.09 p/km) when charging at an off-peak electricity rate, while a conventional petrol-powered car costs more than 10 pence per mile (6.21 p/km). These estimates are based on a national average of British Petrol Economy 7 rates as of January 2012, and assumed 7 hours of charging overnight at the night rate and one hour in the daytime charged at the Tier-2 daytime rate.[52]
Battery depreciation[edit]
Much of the mileage-related cost of an electric vehicle is depreciation of the battery pack.[53] To calculate the cost per kilometer of an electric vehicle it is therefore necessary to assign a monetary value to the wear incurred on the battery.
The Tesla Roadster's battery pack is expected to last seven years with typical driving and costs US$12,000 when pre-purchased today.[54][55] Driving 40 miles (64 km) per day for seven years or 102,200 miles (164,500 km) leads to a battery consumption cost of US$0.1174 per 1 mile (1.6 km) or US$4.70 per 40 miles (64 km).
Total cost of ownership[edit]
A 2010 report, by J.D. Power and Associates states that it is not entirely clear to consumers the total cost of ownership of battery electric vehicles over the life of the vehicle, and "there is still much confusion about how long one would have to own such a vehicle to realize cost savings on fuel, compared with a vehicle powered by a conventional internal combustion engine (ICE). The resale value of HEVs and BEVs, as well as the cost of replacing depleted battery packs, are other financial considerations that weigh heavily on consumers' minds."[56]
A 2011 study found that the gasoline costs savings of plug-in electric cars over their lifetimes do not offset their higher purchase prices.[57][58][57]
The Chinese auto manufacturer BYD calculated on its website in 2015 that a BYD e6 taxi over five years would give a saving of about $74,000 over the equivalent petrol consumption.[59]
Dealership reluctance to sell[edit]
Almost all new cars in the United States are sold through dealerships, so they play a crucial role in the sales of electric vehicles, and negative attitudes can hinder early adoption of plug-in electric vehicles.[60][61] Dealers decide which cars they want to stock, and a salesperson can have a big impact on how someone feels about a prospective purchase. Sales people have ample knowledge of internal combustion cars while they do not have time to learn about a technology that represents a fraction of overall sales.[60] Retailers are central to ensuring that buyers have the information and support they need to gain the full benefits of adopting this new technology.[61]
There are several reasons for the reluctance of some dealers to sell plug-in electric vehicles. PEVs do not offer car dealers the same profits as gasoline-powered car. Plug-in electric vehicles take more time to sell because of the explaining required, which hurts overall sales and sales people commissions. Electric vehicles also may require less maintenance, resulting in loss of service revenue, and thus undermining the biggest source of dealer profits, their service departments. According to the National Automobile Dealers Association (NADA), dealers on average make three times as much profit from service as they do from new car sales. However, a NADA spokesman said there was not sufficient data to prove that electric cars would require less maintenance.[60] According to The New York Times, BMW and Nissan are among the companies whose dealers tend to be more enthusiastic and informed, but only about 10% of dealers are knowledgeable on the new technology.[60]
A 2014 study found many car dealers are not enthusiastic about selling plug-in vehicles.[61] Surveys of buyers of plug-in electric vehicles showed they were significantly less satisfied and rated the dealer purchase experience much lower than buyers of non-premium conventional cars. Plug-in buyers expect more from dealers than conventional buyers, including product knowledge and support that extends beyond traditional offerings.[61] In 2014 Consumer Reports reported that not all sales people seemed enthusiastic about making PEV sales, and many seemed not to have a good understanding of electric-car incentives or of charging needs and costs. At 35 of the 85 dealerships visited, the secret shoppers said sales people recommended buying a gasoline-powered car instead.[62]
The ITS-Davis study also found that a small but influential minority of dealers have introduced new approaches to better meet the needs of plug-in customers. Examples include marketing carpool lane stickers, enrolling buyers in charging networks, and preparing incentive paperwork for customers. Some dealers assign seasoned sales people as plug-in experts, many of whom drive plug-ins themselves to learn and be familiar with the technology and relate the car's benefits to potential buyers. The study concluded also that carmakers could do much more to support dealers selling PEVs.[61]
Environmental aspects[edit]
Electric cars have several benefits over conventional internal combustion engine automobiles, including a significant reduction of local air pollution, especially in cities, as they do not emit harmful tailpipe pollutants such as particulates (soot), volatile organic compounds, hydrocarbons, carbon monoxide, ozone, lead, and various oxides of nitrogen.[63][64][65]The clean air benefit may only be local because, depending on the source of the electricity used to recharge the batteries, air pollutant emissions may be shifted to the location of the generation plants.[4] This is referred to as the long tailpipe of electric vehicles. The amount of carbon dioxide emitted depends on the emission intensity of the power sources used to charge the vehicle, the efficiency of the said vehicle and the energy wasted in the charging process. For mains electricity the emission intensity varies significantly per country and within a particular country, and on the demand, the availability of renewable sources and the efficiency of the fossil fuel-based generation used at a given time.[66][67][68]
Electric cars usually also show significantly reduced greenhouse gas emissions, depending on the method used for electricity generation to charge the batteries.[4][5] For example, some battery electric vehicles do not produce CO2 emissions at all, but only if their energy is obtained from sources such as solar, wind, nuclear, or hydropower.[69]
Even when the power is generated using fossil fuels, electric vehicles usually, compared to gasoline vehicles, show significant reductions in overall well-wheel global carbon emissions due to the highly carbon-intensive production in mining, pumping, refining, transportation and the efficiencies obtained with gasoline.[70]
Performance[edit]
Acceleration and drivetrain design[edit]
Electric motors can provide high power-to-weight ratios, and batteries can be designed to supply the large currents to support these motors. Electric motors have very flat torque curves down to zero speed. For simplicity and reliability, many electric cars use fixed-ratio gearboxes and have no clutch.
Although some electric vehicles have very small motors, 15 kW (20 hp) or less and therefore have modest acceleration, many electric cars have large motors and brisk acceleration. In addition, the relatively constant torque of an electric motor, even at very low speeds tends to increase the acceleration performance of an electric vehicle relative to that of the same rated motor power internal combustion engine.
Electric vehicles can also use a direct motor-to-wheel configuration which increases the amount of available power. Having multiple motors connected directly to the wheels allows for each of the wheels to be used for both propulsion and as braking systems, thereby increasing traction.[72][73][74] When not fitted with an axle, differential, or transmission, electric vehicles have less drivetrain rotational inertia.
For example, the Venturi Fetish delivers supercar acceleration despite a relatively modest 220 kW (295 hp), and top speed of around 160 km/h (100 mph). Some DC-motor-equipped drag racer EVs have simple two-speed manual transmissions to improve top speed.[75] The Tesla Roadster (2008) 2.5 Sport can accelerate from 0 to 100 km/h (0 to 62 mph) in 3.7 seconds with a motor rated at 215 kW (288 hp).[76] Tesla Model S P100D (Performance / 100kWh / 4-wheel drive) is capable of 2.28 second to 60 mph at a price of $140,000 [1]. As of May 2017, the P100D is the second fastest production car ever built, slower by a mere 0.08[clarification needed] only to a $847,975 Porsche 918 Spyder.[77]The Wrightspeed X1 prototype created by Wrightspeed Inc was in 2009 the worlds fastest street legal electric car to accelerate from 0 to 97 km/h (0 to 60 mph), which it does in 2.9 seconds.[78][79] The electric supercar Rimac Concept One can go from 0–100 km/h (0–62 mph) in 2.8 seconds using 811 kW (1,088 hp).
Energy efficiency[edit]
Internal combustion engines have thermodynamic limits on efficiency, expressed as fraction of energy used to propel the vehicle compared to energy produced by burning fuel. Gasoline engines effectively use only 15% of the fuel energy content to move the vehicle or to power accessories, and diesel engines can reach on-board efficiency of 20%, while electric vehicles have on-board efficiency of around 80%.[80]
Electric motors are more efficient than internal combustion engines in converting stored energy into driving a vehicle. Electric cars do not idle. Regenerative braking can recover as much as one fifth of the energy normally lost during braking.[4][80]
Production and conversion electric cars typically use 10 to 23 kW·h/100 km (0.17 to 0.37 kW·h/mi).[81][82] Approximately 20% of this power consumption is due to inefficiencies in charging the batteries. Tesla Motors indicates that the vehicle efficiency (including charging inefficiencies) of their lithium-ion battery powered vehicle is 12.7 kW·h/100 km (0.21 kW·h/mi) and the well-to-wheels efficiency (assuming the electricity is generated from natural gas) is 24.4 kW·h/100 km (0.39 kW·h/mi).[83]
Cabin heating and cooling[edit]
Electric vehicles generate very little waste heat. Supplemental heat may have to be used to heat the interior of the vehicle if heat generated from battery charging/discharging cannot be used to heat the interior. While heating can be provided with an electric resistance heater, higher efficiency and integral cooling can be obtained with a reversible heat pump. Positive Temperature Coefficient (PTC) junction cooling[84] is also attractive for its simplicity — this kind of system is used for example in the Tesla Roadster (2008).
To avoid draining the battery and thus reducing the range, some models allow the cabin to be heated while the car is plugged in. For example, the Nissan Leaf, the Mitsubishi i-MiEV and the Tesla Model S can be pre-heated while the vehicle is plugged in.[85][86][87]
Some electric cars, for example the Citroën Berlingo Electrique, use an auxiliary heating system (for example gasoline-fueled units manufactured by Webasto or Eberspächer) but sacrifice "green" and "Zero emissions" credentials. Cabin cooling can be augmented with solar power, or by automatically allowing outside air to flow through the car when parked. Two models of the 2010 Toyota Prius include this feature as an option.[88]
Safety[edit]
The safety issues of BEVs are largely dealt with by the international standard ISO 6469. This document is divided in three parts dealing with specific issues:
- On-board electrical energy storage, i.e. the battery
- Functional safety means and protection against failures
- Protection of persons against electrical hazards.
Risk of fire[edit]
Lithium-ion batteries may suffer thermal runaway and cell rupture if overheated or overcharged, and in extreme cases this can lead to combustion.[89] Several plug-in electric vehicle fire incidents have taken place since the introduction of mass-production plug-in electric vehicles in 2008. Most of them have been thermal runaway incidents related to their lithium-ion battery packs, and have involved the Zotye M300 EV, Chevrolet Volt, Fisker Karma, BYD e6, Dodge Ram 1500 Plug-in Hybrid, Toyota Prius Plug-in Hybrid, Mitsubishi i-MiEV and Outlander P-HEV. As of November 2013, four post-crash fires associated with the batteries of all-electric cars—involving one BYD e6 and three Tesla Model S cars—have been reported.[citation needed]
The first modern crash-related fire was reported in China in May 2012, after a high-speed car crashed into a BYD e6 taxi in Shenzhen.[90]The second reported incident occurred in the United States on October 1, 2013, when a Tesla Model S caught fire over ten minutes after the electric car hit metal debris on a highway in Kent, Washington state, and the debris punctured one of 16 modules within the battery pack.[91][92] A second reported fire occurred on October 18, 2013 in Merida, Mexico. In this case the vehicle was being driven at high speed through a roundabout and crashed through a wall and into a tree. The fire broke out many minutes after the driver exited the vehicle. On November 6, 2013, a Tesla Model S being driven on Interstate 24 near Murfreesboro, Tennessee caught fire after it struck a tow hitch on the roadway, causing damage beneath the vehicle.[93]
In the United States, General Motors ran in several cities a training program for firefighters and first responders to demonstrate the sequence of tasks required to safely disable the Chevrolet Volt’s powertrain and its 12 volt electrical system, which controls its high-voltage components, and then proceed to extricate injured occupants. The Volt's high-voltage system is designed to shut down automatically in the event of an airbag deployment, and to detect a loss of communication from an airbag control module.[94][95] GM also made available an Emergency Response Guide for the 2011 Volt for use by emergency responders. The guide also describes methods of disabling the high voltage system and identifies cut zone information.[96] Nissan also published a guide for first responders that details procedures for handling a damaged 2011 Leaf at the scene of an accident, including a manual high-voltage system shutdown, rather than the automatic process built-in the car's safety systems.[97][98]
Vehicle safety[edit]
Great effort is taken to keep the mass of an electric vehicle as low as possible to improve its range and endurance. However, the weight and bulk of the batteries themselves usually makes an EV heavier than a comparable gasoline vehicle, reducing range and leading to longer braking distances. However, in a collision, the occupants of a heavy vehicle will, on average, suffer fewer and less serious injuries than the occupants of a lighter vehicle; therefore, the additional weight brings safety benefits[99] despite having a negative effect on the car's performance.[100] They also use up interior space if packaged ineffectively. If stored under the passenger cell, not only is this not the case, they also lower the vehicles's center of gravity, increasing driving stability, thereby lowering the risk of an accident through loss of control. An accident in a 2,000 lb (900 kg) vehicle will on average cause about 50% more injuries to its occupants than a 3,000 lb (1,400 kg) vehicle.[101] In a single car accident,[citation needed] and for the other car in a two car accident, the increased mass causes an increase in accelerations and hence an increase in the severity of the accident.
Some electric cars use low rolling resistance tires, which typically offer less grip than normal tires.[102][103][104] Many electric cars have a small, light and fragile body, though, and therefore offer inadequate safety protection. The Insurance Institute for Highway Safety in America had condemned the use of low speed vehicles and "mini trucks," referred to as neighborhood electric vehicles (NEVs) when powered by electric motors, on public roads.[105] Mindful of this, several companies (Tesla Motors, BMW, Uniti) have succeeded in keeping the body light, while making it very strong.[106]
Hazard to pedestrians[edit]
At low speeds, electric cars produced less roadway noise as compared to vehicles propelled by internal combustion engines. Blind people or the visually impaired consider the noise of combustion engines a helpful aid while crossing streets, hence electric cars and hybrids could pose an unexpected hazard.[107][108] Tests have shown that this is a valid concern, as vehicles operating in electric mode can be particularly hard to hear below 20 mph (30 km/h) for all types of road users and not only the visually impaired. At higher speeds, the sound created by tire friction and the air displaced by the vehicle start to make sufficient audible noise.[108]
The Government of Japan, the U.S. Congress, and the European Parliament passed legislation to regulate the minimum level of sound for hybrids and plug-in electric vehicles when operating in electric mode, so that blind people and other pedestrians and cyclists can hear them coming and detect from which direction they are approaching.[108][109][110][111] The Nissan Leaf was the first electric car to use Nissan's Vehicle Sound for Pedestrians system, which includes one sound for forward motion and another for reverse.[112][113] As of January 2014, most of the hybrids and plug-in electric and hybrids available in the United States, Japan and Europe make warning noises using a speaker system. The Tesla Model S is one of the few electric cars without warning sounds, because Tesla Motors will wait until regulations are enacted.[114] Volkswagen and BMW also decided to add artificial sounds to their electric drive cars only when required by regulation.[115]
Several anti-noise and electric car advocates have opposed the introduction of artificial sounds as warning for pedestrians, as they argue that the proposed system will only increase noise pollution.[citation needed]. Added to this, such an introduction is based on vehicle type and not actual noise level, a concern regarding ICE vehicles which themselves are becoming quieter.
No comments:
Post a Comment